Kyber : Une Nouvelle Approche pour le Streaming et le Contrôle en Temps Réel

1. Introduction : Jean-Baptiste Kempf et la Genèse de Kyber

Jean-Baptiste Kempf est une figure marquante de la communauté open source, reconnu principalement pour ses contributions majeures au projet VideoLAN et au célèbre lecteur multimédia VLC.¹ Ingénieur en informatique français¹, son expertise dans le domaine du multimédia est vaste et reconnue. Avant de se lancer dans le développement de sa nouvelle technologie, Kyber, il a occupé le poste de directeur technique chez Shadow, un service français de cloud gaming.¹ Son implication de longue date dans le projet VLC, un lecteur multimédia largement adopté et compatible avec de nombreux formats, confère une crédibilité et une expertise solides à sa nouvelle entreprise, Kyber. Sa profonde compréhension des technologies multimédias constitue un atout fondamental pour ce nouveau projet. Kempf est impliqué dans le projet VLC depuis le début des années 2000.² Le succès de VLC en tant que projet open source, avec des milliards de téléchargements⁴, témoigne de son leadership technique et de sa compréhension des besoins des utilisateurs en matière de multimédia. Cette réputation établie a probablement influencé les principes de développement et de conception de Kyber.

Son expérience chez Shadow lui a permis d'acquérir une connaissance concrète des défis et des limites des technologies de cloud gaming existantes, ce qui a directement motivé le développement de Kyber comme solution à ces problèmes. La transcription de la vidéo indique clairement que le travail de Kempf sur Kyber a été inspiré par les lacunes qu'il a observées chez Shadow. Son implication directe dans un service commercial de cloud gaming lui a donné une connaissance de première main des principaux goulets d'étranglement en matière de performance, en particulier la latence, que Kyber vise à surmonter.

La genèse de Kyber s'inscrit dans un contexte marqué par les difficultés rencontrées par Shadow. Initialement présenté comme un service prometteur de cloud gaming ⁶, Shadow a finalement déposé le bilan en 2021, et une tentative de rachat a échoué (bien que la vidéo mentionne un rachat raté, les sources indiquent une acquisition réussie par OVHcloud après la faillite). ¹⁰ Face à ces obstacles, Jean-Baptiste Kempf a pris la décision de s'engager sur une nouvelle voie en développant Kyber en tant que technologie open source. ²⁰ L'échec de Shadow, malgré la direction technique de Kempf, suggère des problèmes systémiques au sein du modèle économique du cloud gaming ou dans la mise en œuvre spécifique chez Shadow, ce qui a conduit à une remise en question fondamentale et à une orientation vers une technologie plus

largement applicable comme Kyber. La nature open source de Kyber marque une rupture avec le modèle propriétaire de Shadow, favorisant potentiellement une adoption plus large, des contributions de la communauté et une voie de développement plus durable. Kempf a une solide expérience dans l'open source, comme en témoigne son implication de longue date dans VLC.² Le choix d'un modèle open source pour Kyber s'aligne sur ses succès passés et suggère une croyance dans le pouvoir du développement piloté par la communauté et le potentiel d'un impact plus large dans divers secteurs.

2. L'Essor et la Chute de Shadow : Les Leçons Retenues

Le mandat de Jean-Baptiste Kempf chez Shadow en tant que directeur technique s'est déroulé de septembre 2020 au 30 avril 2021.¹ Son recrutement visait à rendre le gaming RTX plus abordable.6 Durant son passage, des attentes étaient placées sur l'amélioration du streaming et des performances.6 Son mandat relativement court chez Shadow, coïncidant avec ses difficultés financières, suggère que les problèmes sous-jacents étaient probablement profondément enracinés et peut-être au-delà de la capacité d'un seul directeur technique à résoudre rapidement. Kempf a rejoint Shadow en septembre 2020 ³ et l'a quitté en avril 2021.¹ Cette période précède et chevauche directement le dépôt de bilan de Shadow en mars 2021.¹0 Ce calendrier implique que Kempf a probablement été recruté pour résoudre des problèmes existants, mais la situation financière s'est rapidement détériorée.

Plusieurs facteurs ont contribué à la faillite de Shadow en 2021, comme le mentionnent les extraits de recherche : une forte demande et des difficultés à augmenter la capacité des serveurs 11, des dettes envers le fournisseur de serveurs 2CRSi 11, une pénurie de composants électroniques, en particulier de cartes graphiques, due à la pandémie de COVID-19¹¹, une structure tarifaire non rentable, surtout après les réductions de prix 19, des erreurs stratégiques et des changements d'orientation par la nouvelle direction après l'acquisition.¹⁰ La faillite de Shadow était un problème aux multiples facettes impliquant une mauvaise gestion financière, des facteurs externes comme les pénuries de matériel, et potentiellement un modèle économique défectueux pour le cloud gaming à cette échelle. Les extraits de recherche indiquent constamment une combinaison de facteurs. L'incapacité à évoluer efficacement pour répondre à une forte demande ¹¹ associée à une dette importante ¹¹ et à la hausse des coûts du matériel en raison des pénuries ¹¹ ont créé une tempête parfaite. De plus, la réduction des prix dans le but de gagner des parts de marché ¹⁹ sans une structure de coûts durable a probablement exacerbé la pression financière.

L'acquisition de Blade (la société mère de Shadow) par Octave Klaba d'OVHcloud en mai 2021 ¹⁰ a marqué un tournant. Klaba a clairement indiqué son manque d'intérêt pour le cloud gaming et sa volonté de développer une alternative européenne à Office 365. ¹⁰ Une restructuration et des modifications des offres de services de Shadow ont suivi. ¹⁰ L'acquisition par OVHcloud, une entreprise aux priorités stratégiques différentes, a effectivement marqué un éloignement de la vision initiale de Shadow en tant que plateforme de cloud gaming de premier plan, ce qui a probablement influencé la décision de Kempf de poursuivre une nouvelle entreprise indépendante. Les déclarations publiques de Klaba concernant ses intentions pour Blade ¹⁰ indiquaient clairement que le cloud gaming n'était pas sa priorité principale. Ce changement de direction et le manque d'engagement envers la communauté des joueurs ont probablement contribué au départ de Kempf et à sa motivation à construire une technologie comme Kyber qui pourrait résoudre les principaux défis techniques qu'il avait observés.

Les défis rencontrés par Shadow (latence, évolutivité, coût) sont directement liés aux principes de conception fondamentaux de Kyber (latence ultra-faible, large applicabilité, open source). ²⁰ Kempf a mis l'accent sur la résolution des problèmes techniques fondamentaux plutôt que de se concentrer uniquement sur une application spécifique comme le jeu. Kyber peut être considéré comme une réponse directe aux limites et aux défis du modèle économique rencontrés avec Shadow, visant une solution plus polyvalente et techniquement robuste pour l'interaction à distance en temps réel. La transcription de la vidéo souligne la capacité de Kyber à atteindre une latence significativement inférieure à celle de Shadow et d'autres technologies existantes. L'accent mis sur l'open source et la prise en charge d'un large éventail de systèmes d'exploitation et d'applications ²⁰ suggère un effort délibéré pour éviter les pièges qui ont pu contribuer aux difficultés de Shadow.

3. Kyber : Redéfinir le Streaming en Temps Réel

Kyber est un SDK de contrôle en temps réel conçu pour la transmission vidéo à latence ultra-faible. L'objectif principal est d'atteindre la latence la plus faible possible pour le contrôle de machines en temps réel. L'approche de Kyber, axée sur la latence, contraste avec les solutions de streaming traditionnelles qui privilégient la qualité et la synchronisation audio/vidéo. Il s'agit d'une solution de bout en bout qui englobe le serveur, le client et le protocole réseau. L'architecture de Kyber est fondamentalement orientée vers la minimisation du délai à chaque étape du pipeline de streaming, de la capture à l'affichage, ce qui représente un changement de paradigme dans la manière d'aborder la transmission de médias en temps réel. L'accent mis sur la latence "glass-to-glass" lindique une approche holistique de

l'optimisation. En contrôlant l'ensemble du pipeline, Kyber peut mettre en œuvre des optimisations agressives qui ne seraient pas réalisables dans un système plus fragmenté.

Kyber exploite et modifie des outils open source existants. FFmpeg est utilisé comme serveur, entièrement recâblé pour fonctionner en "mode push" afin d'accélérer l'encodage et la transmission.²⁰ VLC est modifié pour fonctionner en "vrai temps réel", les fonctionnalités de synchronisation étant supprimées afin de minimiser la latence.²⁰ L'utilisation de libVLC, le moteur de VLC, permet l'intégration dans des applications.²⁵ Les bibliothèques FFmpeg sont utilisées côté serveur.²¹ Cette réutilisation de bibliothèques établies et hautement optimisées accélère le développement et tire parti de nombreuses années d'expérience collective. Un nouveau serveur d'entrée et un multiplexeur sont écrits en Rust.²¹ En s'appuyant sur les bases solides de VLC et FFmpeg, Kyber bénéficie de leur vaste prise en charge des codecs et de leurs capacités multiplateformes tout en permettant une optimisation ciblée pour son objectif spécifique de latence ultra-faible. VLC et FFmpeg sont des frameworks multimédias matures et largement utilisés.1 Leur prise en charge existante d'un large éventail de codecs ²¹ et de plateformes ¹ offre un avantage significatif à Kyber, lui permettant d'atteindre rapidement une large compatibilité sans avoir besoin de réinventer ces aspects fondamentaux.

Kyber prend en charge l'entrée bidirectionnelle, permettant la transmission de signaux de contrôle (manette de jeu, souris, USB) vers le serveur.²⁰ Cette fonctionnalité est essentielle pour les applications interactives comme les jeux, la robotique et le contrôle à distance. La capacité d'envoyer des données de contrôle avec une latence minimale est cruciale pour créer une expérience véritablement réactive et immersive dans les scénarios d'interaction à distance, ce qui distingue Kyber des technologies de streaming unidirectionnel traditionnelles. Pour des applications telles que la chirurgie à distance ou le pilotage de drones, même un léger délai dans la saisie des commandes peut avoir des conséquences importantes. L'accent mis par Kyber sur la faible latence pour la vidéo et les données de contrôle répond à ce besoin critique.

4. La Latence Démystifiée : L'Avantage de Vitesse de Kyber

Kyber atteint une latence "glass-to-glass" de 8 millisecondes.²⁰ Cette latence englobe l'ensemble du processus : capture, encodage, transmission, décodage et affichage. La vidéo mentionne une démonstration de "latence négative" dans des configurations matérielles spécifiques (client avec un taux de rafraîchissement plus élevé que le serveur).²⁸ Atteindre une latence de l'ordre de quelques millisecondes représente un bond en avant significatif dans la technologie de streaming en temps réel, repoussant

les limites de ce qui était auparavant considéré comme possible. La transcription de la vidéo souligne la nature disruptive de la latence de Kyber, affirmant qu'elle est plus rapide que le temps nécessaire pour cligner des yeux. Ce niveau de performance ouvre des possibilités pour des applications qui étaient auparavant impraticables en raison des contraintes de latence.

La latence de Kyber est considérablement inférieure à celle de diverses technologies de streaming et de communication. La télévision traditionnelle a une latence d'environ 10 secondes. Le streaming OTT (Over-The-Top) avait initialement une latence d'environ 1 minute. Le streaming à faible latence se situe généralement entre 15 et 30 secondes. Le streaming du Super Bowl a été mesuré à environ 38 secondes. Twitch a une latence d'environ 5 secondes (5000 millisecondes). Zoom, WebEx et Teams ont une latence d'environ 200 millisecondes (un bon résultat étant d'environ 100 millisecondes). Ces différences s'expliquent par des facteurs tels que la mise en mémoire tampon dans le streaming traditionnel et la nature directe et en temps réel de la visioconférence.

Tableau 1 : Comparaison de la Latence des Technologies de Streaming

Technologie	Latence Typique (ms)
Kyber	8
Zoom/WebEx/Teams (Bon)	100
Zoom/WebEx/Teams (Normal)	200
Twitch	5000
Streaming à Faible Latence	15000 - 30000
Streaming OTT (Initial)	60000
Télévision Traditionnelle	10000
Streaming du Super Bowl	38000

La latence de Kyber est inférieure de plusieurs ordres de grandeur aux solutions de streaming typiques et significativement meilleure que même les plateformes de communication en temps réel comme Zoom, ce qui en fait une technologie véritablement disruptive pour les applications nécessitant un retour d'information immédiat. L'énorme différence de latence entre Kyber et d'autres technologies souligne ses capacités uniques. Alors que d'autres plateformes privilégient la fiabilité, la qualité ou l'évolutivité de différentes manières, l'objectif singulier de Kyber de minimiser la latence ouvre de nouvelles possibilités pour les applications interactives en temps réel.

Plusieurs facteurs techniques contribuent à la faible latence de Kyber. Il utilise un serveur de streaming en mode push (FFmpeg) ²⁰, un client VLC épuré et orienté vers le temps réel ²⁰, le protocole QUIC (UDP, HTTP3) pour un établissement de connexion et un transfert de données plus rapides ²¹, la correction d'erreur directe (FEC) avec RaptorQ pour minimiser les retransmissions ²¹ et une optimisation aux niveaux de l'encodeur et du décodeur. La faible latence de Kyber n'est pas le résultat d'une seule percée, mais plutôt d'une combinaison de technologies et de décisions architecturales soigneusement choisies et optimisées qui privilégient la vitesse à tous les niveaux. L'utilisation du streaming en mode push, l'élimination de la synchronisation inutile et l'adoption d'un protocole de transport moderne comme QUIC, ainsi que des mécanismes de correction d'erreur, contribuent tous à réduire la latence. Cette approche à plusieurs volets met en évidence une compréhension approfondie des facteurs affectant la transmission de médias en temps réel.

5. Au-delà du Jeu : Diverses Applications de Kyber

Le contrôle de drones est un domaine d'application clé pour Kyber.²⁰ Une latence ultra-faible est cruciale pour un fonctionnement à distance précis et sûr des drones.²⁰ Il existe des exemples d'applications de contrôle de drones et l'importance du retour vidéo en temps réel est soulignée.³⁸ Kyber pourrait permettre des opérations de drones plus complexes, voire des essaims. La capacité de Kyber à fournir un retour visuel et de contrôle quasi instantané a des implications significatives pour l'industrie des drones, permettant des applications plus sophistiquées dans des domaines tels que la surveillance, l'inspection et la livraison. Le contrôle des drones, en particulier dans des environnements complexes ou pour des tâches complexes, nécessite des réponses précises et rapides. La faible latence offerte par Kyber peut combler le fossé entre la saisie de l'opérateur et l'action du drone, améliorant ainsi la sécurité et l'efficacité.

La robotique est un autre domaine d'application important.²⁰ Une faible latence est nécessaire pour contrôler les robots à distance, en particulier pour les tâches nécessitant une motricité fine ou une interaction en temps réel avec

l'environnement.²⁰ Kyber pourrait être utilisé dans l'automatisation industrielle, la chirurgie à distance et d'autres applications robotiques.²⁰ D'autres entreprises dans le domaine de la robotique se concentrent également sur les commandes pilotées par l'IA et la manipulation dextre.⁴² L'application de Kyber dans la robotique pourrait révolutionner la manipulation et l'interaction à distance, permettant aux humains de contrôler des machines complexes avec un niveau de précision et de réactivité auparavant inatteignable sur un réseau. Dans des domaines comme la chirurgie à distance, même un léger délai peut être critique. La latence ultra-faible de Kyber pourrait rendre de telles procédures plus sûres et plus réalisables en fournissant aux chirurgiens un retour visuel et tactile en temps réel.

La télémédecine est un domaine prometteur pour Kyber, notamment pour les consultations à distance, les diagnostics et même la téléchirurgie.²⁰ Une vidéo et un contrôle en temps réel sont essentiels pour une prestation de soins de santé à distance efficace. Des avancées existent déjà dans les technologies de télémédecine.⁴⁸ La latence ultra-faible de Kyber pourrait améliorer considérablement les capacités de la télémédecine, permettant des services de soins de santé à distance plus interactifs et réactifs, ce qui pourrait réduire les barrières géographiques et améliorer l'accès à une expertise médicale spécialisée. Pour les diagnostics ou les consultations à distance impliquant un examen visuel ou une interaction en temps réel, une faible latence est cruciale pour que le médecin puisse évaluer avec précision l'état du patient et fournir des conseils appropriés.

D'autres applications potentielles incluent le rendu dans le cloud pour le streaming en temps réel de graphiques 3D complexes.²⁰ Plus généralement, Kyber est applicable à tout scénario nécessitant un contrôle à distance en temps réel et un retour vidéo.²¹ La nature fondamentale de la technologie de Kyber, axée sur la minimisation de la latence pour la vidéo et le contrôle, la positionne comme un outil fondamental avec des applications potentielles dans un large éventail de secteurs au-delà des exemples spécifiques discutés. Toute application impliquant un opérateur humain interagissant à distance avec une machine ou un environnement où le retour visuel et le contrôle immédiat sont essentiels pourrait potentiellement bénéficier des capacités de Kyber.

6. Les Piliers Technologiques : VLC, FFmpeg et le Protocole QUIC

VLC et FFmpeg sont les fondations open source cruciales sur lesquelles repose Kyber.²⁰ Ces projets open source matures et largement utilisés offrent un riche ensemble de fonctionnalités et une prise en charge étendue des codecs.¹ L'implication profonde de Jean-Baptiste Kempf dans les deux projets apporte son expertise au développement de Kyber.¹ L'utilisation de libVLC permet d'intégrer les

fonctionnalités de VLC.²⁵ En tirant parti de l'infrastructure établie et du soutien de la communauté de VLC et FFmpeg, Kyber réduit considérablement les coûts de développement et assure un niveau élevé de fiabilité et de compatibilité. Au lieu de tout construire à partir de zéro, Kempf a stratégiquement choisi de s'appuyer sur des technologies open source existantes et bien testées. Cette approche permet un développement plus rapide, l'accès à un large éventail de fonctionnalités et l'avantage des contributions de la communauté et des corrections de bogues.

Kyber utilise le protocole QUIC (Quick UDP Internet Connections) pour la communication réseau. ²¹ Les principales caractéristiques de QUIC qui contribuent à une faible latence sont : un transport basé sur UDP, réduisant la surcharge par rapport à TCP ³⁰ ; une latence de prise de contact réduite (0-RTT pour les connexions répétées) ³¹ ; un multiplexage sans blocage de tête de ligne ³² ; un chiffrement TLS intégré ³² ; une migration de connexion pour une meilleure résilience aux changements de réseau. ³² Le choix de QUIC comme protocole de transport sous-jacent est un facteur clé de la latence ultra-faible de Kyber, offrant des avantages significatifs par rapport aux solutions de streaming traditionnelles basées sur TCP. QUIC a été spécifiquement conçu pour répondre aux limitations de latence et de performance de TCP pour les applications web modernes. Ses fonctionnalités telles que le temps de prise de contact réduit et la résistance au blocage de tête de ligne se traduisent directement par une latence plus faible et une expérience plus réactive pour le streaming en temps réel.

Kyber utilise la correction d'erreur directe (FEC) avec RaptorQ.²¹ La FEC permet de reconstruire les paquets perdus sans avoir besoin de retransmission, réduisant ainsi davantage la latence.²¹ Il existe un compromis entre une utilisation accrue de la bande passante et une latence améliorée. La mise en œuvre de la FEC démontre l'accent mis par Kyber sur le maintien d'une faible latence même en présence de perte de paquets réseau, un défi courant dans des conditions de réseau réelles. Dans les scénarios où la retransmission des paquets perdus introduirait des délais inacceptables, la FEC fournit un mécanisme pour maintenir un flux fluide en envoyant de manière proactive des données redondantes qui peuvent être utilisées pour reconstruire les informations perdues.

7. Compatibilité Multiplateforme : Accessibilité sur Tous les Appareils

Kyber est compatible avec de nombreuses plateformes et systèmes d'exploitation, comme mentionné dans la vidéo : Windows, Linux, Mac, iOS, iPad, Apple TV, Android, Android TV, Chromebook, Apple Vision Pro.²¹ Une version web fonctionne directement

dans le navigateur.²¹ Le serveur est compatible avec macOS, Linux (y compris avec Wayland) et Windows, prenant en charge les encodeurs NVIDIA, AMD et Intel, ainsi que l'encodage logiciel et divers codecs (H.264, HEVC, VVC, AV1, VP8, VP9).²¹ La large compatibilité multiplateforme de Kyber élargit considérablement ses cas d'utilisation potentiels et son public cible, le rendant accessible sur un large éventail d'appareils et d'environnements. En prenant en charge un ensemble diversifié de systèmes d'exploitation et de plateformes matérielles, Kyber peut être intégré à une multitude d'applications sans être limité par la compatibilité des appareils. C'est un avantage significatif pour les développeurs et les utilisateurs.

La prise en charge étendue des plateformes de Kyber est en grande partie due à sa base sur VLC, connu pour sa grande portabilité.¹ Le portage relativement rapide de Kyber sur de nouvelles plateformes comme Apple Vision Pro a été possible grâce à la base de code VLC existante. La réutilisation de l'architecture de base et des adaptations de plateforme de VLC offre à Kyber une avance considérable en termes de compatibilité, ce qui permet d'économiser un temps et des efforts de développement considérables. VLC a été méticuleusement porté sur de nombreuses plateformes au fil des ans.¹ Kyber bénéficie directement de ce travail antérieur, ce qui lui permet de se déployer rapidement sur de nouveaux systèmes sans avoir besoin d'entreprendre le processus de portage complexe à partir de zéro.

L'utilisation de WebAssembly (Wasm) permet la version web de Kyber, lui permettant de fonctionner dans les navigateurs web modernes sans avoir besoin de plugins.²¹ WebAssembly fournit un mécanisme puissant pour étendre la portée de Kyber à pratiquement n'importe quel appareil doté d'un navigateur web, améliorant encore son accessibilité et son potentiel d'adoption généralisée. WebAssembly permet des performances quasi natives du code au sein d'un navigateur web, ce qui en fait une technologie appropriée pour les applications exigeantes comme le streaming et le contrôle vidéo en temps réel. Cela élimine le besoin de plugins de navigateur spécifiques à la plateforme et simplifie le déploiement.

8. L'Open Source au Service de l'Innovation : Le Modèle de Licence de Kyber

Kyber est publié sous licence AGPL (Affero General Public License) pour les projets open source et l'utilisation non commerciale.²⁰ La licence AGPL garantit que toute modification ou œuvre dérivée est également open source.²⁰ Le choix de la licence AGPL favorise la transparence, la collaboration communautaire et la libre disponibilité de Kyber à des fins non commerciales, stimulant ainsi l'innovation et une adoption plus large parmi les développeurs et les chercheurs. L'AGPL est conçue pour garantir

que les avantages des logiciels open source restent accessibles à la communauté. En choisissant cette licence, Kempf encourage les contributions et le partage des avancées apportées à Kyber.

Une option de licence commerciale double est également disponible pour les entreprises qui souhaitent intégrer Kyber dans des produits propriétaires sans obligation de rendre leur propre code open source. ²⁰ Ce modèle de licence double vise à équilibrer la croissance de la communauté avec le besoin de revenus durables. ⁷ Les considérations juridiques concernant l'utilisation de VLC et FFmpeg (sous licence LGPL) ne font pas obstacle à ce modèle de licence. La stratégie de double licence fournit un mécanisme pour le développement durable de Kyber en permettant aux entités commerciales de soutenir le projet par le biais de frais de licence tout en le proposant gratuitement à la communauté open source. Ce modèle est courant pour les projets open source réussis. Il permet aux particuliers et aux organisations à but non lucratif d'utiliser la technologie librement, tandis que les entreprises qui en tirent une valeur commerciale contribuent financièrement à sa maintenance et à son développement continus.

Kempf souhaite construire une communauté autour de Kyber et encourager les contributions externes.⁷ Des exemples de portages et d'ajouts de fonctionnalités pilotés par la communauté existent déjà. La nature open source de Kyber, associée à son modèle de licence double, crée un cercle vertueux où les contributions de la communauté améliorent la technologie, et l'adoption commerciale fournit les ressources nécessaires à la poursuite du développement et de l'innovation. Les projets open source prospèrent grâce à l'implication de la communauté. En rendant le code source de Kyber disponible, Kempf invite des développeurs du monde entier à apporter leur expertise, ce qui conduit à une technologie plus robuste et plus riche en fonctionnalités.

9. Conclusion : L'Avenir de l'Interaction en Temps Réel avec Kyber

Kyber représente une avancée technologique majeure dans le domaine du streaming en temps réel. Sa performance en matière de latence ultra-faible est révolutionnaire. Sa compatibilité multiplateforme étendue le rend accessible à un large éventail d'utilisateurs et d'applications. Son utilisation innovante des technologies open source et du protocole QUIC témoigne d'une approche novatrice. Sa polyvalence lui permet d'être appliqué dans de nombreux domaines au-delà du jeu vidéo.

Le potentiel transformateur de Kyber est considérable dans des domaines tels que le contrôle de drones, la robotique, la télémédecine et la collaboration à distance. Il

pourrait avoir des implications majeures pour l'avenir du cloud computing et des applications interactives en temps réel. Les développements futurs et l'évolution continue de Kyber pourraient apporter des améliorations supplémentaires et étendre encore davantage ses capacités. Son rôle dans la formation de l'avenir des technologies d'interaction et de contrôle à distance est prometteur. Kyber représente une avancée significative dans la technologie de streaming en temps réel, avec le potentiel de débloquer de nouvelles applications et expériences dans divers secteurs en surmontant l'obstacle critique de la latence. La combinaison d'une latence ultra-faible, d'une large compatibilité et d'un modèle open source positionne Kyber comme une technologie potentiellement disruptive. Son impact pourrait se faire sentir dans n'importe quel domaine où l'interaction à distance en temps réel est cruciale, de l'automatisation industrielle au divertissement.

Le succès de Kyber dépendra probablement de la construction d'une communauté open source forte et active et de l'adoption par des entités commerciales grâce à son modèle de licence double. Bien que la technologie elle-même soit prometteuse, la viabilité à long terme et l'impact de Kyber seront déterminés par sa capacité à attirer des développeurs, des utilisateurs et des partenaires commerciaux qui pourront contribuer à sa croissance et à sa durabilité.

Sources des citations

- 1. Jean-Baptiste Kempf Wikipedia, consulté le avril 22, 2025, https://en.wikipedia.org/wiki/Jean-Baptiste Kempf
- 2. Jean-Baptiste Kempf Indigo Design Award Jury, consulté le avril 22, 2025, https://www.indigoaward.com/juries/jean-baptiste-kempf-indigo-design-award-jury
- 3. Jean-Baptiste Kempf SVTA Fellows, consulté le avril 22, 2025, https://fellows.svta.org/profile/jean-baptiste-kempf/
- 4. Meet Jean-Baptiste Kempf: The man who kept VLC free and Ad-free Asaase Radio, consulté le avril 22, 2025, https://www.asaaseradio.com/meet-jean-baptiste-kempf-the-man-who-kept-vlc-free-and-ad-free/
- 5. Jean-Baptiste Kempf Wikidata, consulté le avril 22, 2025, https://www.wikidata.org/wiki/Q58879462
- 6. [AMA] JB Kempf, CTO of Shadow, making RTX gaming affordable for everyone! Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/pcgaming/comments/jx5vct/ama_jb_kempf_cto_of_shadow_making_rtx_gaming/
- 7. Introducing Shadow's new CEO, Mike Fischer, and CTO, Jean-Baptiste Kempf! Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/ShadowPC/comments/itwz7e/introducing_shadows_new_ceo_mike_fischer_and_cto/

- 8. Jean-Baptiste Kempf Profile: Contact Information & Network, consulté le avril 22, 2025, https://pitchbook.com/profiles/person/181467-73P
- 9. 20+ years of building on open source: Jean-Baptiste Kempf's interview | Scaleway Blog, consulté le avril 22, 2025, https://www.scaleway.com/en/blog/jean-baptiste-kempf-talks-the-future-of-open-source/
- 10. Shadow (service) Wikipedia, consulté le avril 22, 2025, https://en.wikipedia.org/wiki/Shadow_(service)
- 11. The cloud gaming firm behind Shadow have filed for bankruptcy ..., consulté le avril 22, 2025, https://www.rockpapershotgun.com/cloud-gaming-firm-behind-shadow-has-filed-for-bankruptcy
- 12. Jezby Ventures takes over Blade and its cloud PC service Shadow ..., consulté le avril 22, 2025,

 https://www.windowscentral.com/jezby-ventures-takes-over-blade-and-its-cloud-pc-service-shadow
- 13. Shadow PC game streaming service under new ownership after declaring bankruptcy [Updated] 9to5Google, consulté le avril 22, 2025, https://9to5google.com/2021/04/30/shadow-game-streaming-bankruptcy/
- 14. So done with the bad performance on shadow and their false advertising "High end Gaming PC": r/ShadowPC Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/ShadowPC/comments/1itjplc/so_done_with_the_bad_performance_on_shadow_and/
- 15. CLOUD GAMING COMPANY SHADOW FILES FOR BANKRUPTCY, consulté le avril 22, 2025, https://rusbankrot.ru/en/bankruptcy-and-liquidation/cloud-gaming-company-shadow-files-for-bankruptcy/
- 16. Cloud gaming firm Blade seeking investment after filing for ..., consulté le avril 22, 2025, https://www.gamesindustry.biz/cloud-gaming-firm-blade-seeking-investment-after-filing-for-bankruptcy
- 17. Cloud Gaming Company Shadow Files For Bankruptcy | TechPowerUp Forums, consulté le avril 22, 2025, https://www.techpowerup.com/forums/threads/cloud-gaming-company-shadow-files-for-bankruptcy.279476/
- 18. Cloud gaming company Blade files for bankruptcy, Octave Klaba considers takeover DCD, consulté le avril 22, 2025,

 https://www.datacenterdynamics.com/en/news/cloud-gaming-company-blade-files-bankruptcy-octave-klaba-considers-takeover/
- 19. I cancelled my Shadow. This is unacceptable. No immediate plans to replace Ultra/Infinite and a vague "maybe by the end of the year" for hardware upgrade: r/ShadowPC Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/ShadowPC/comments/nhah8z/i_cancelled_my_shadow_this is unacceptable_no/
- 20. Ultra-Low Latency Video Control An Interview with Jean-Baptiste Kempf of

- Kyber, consulté le avril 22, 2025,
- https://streaminglearningcenter.com/codecs/an-interview-with-jean-baptiste-kempf-of-kyber.html
- 21. media.frnog.org, consulté le avril 22, 2025, https://media.frnog.org/FRnOG 39/FRnOG 39-6.pdf
- 22. Kyber: A new approach for real-time video and controls streaming based on QUIC, consulté le avril 22, 2025, https://news.ycombinator.com/item?id=39929602
- 23. How did Shadow fail with full demand? : r/ShadowPC Reddit, consulté le avril 22, 2025,
 - https://www.reddit.com/r/ShadowPC/comments/nldb2y/how_did_shadow_fail_with full demand/
- 24. Shadow is in a difficult financial situation, waiting for a buyer: r/ShadowPC Reddit, consulté le avril 22, 2025,
 https://www.reddit.com/r/ShadowPC/comments/lw95j9/shadow_is_in_a_difficult_f
 inancial situation/
- 25. Unity's Open-Source Double Standard: the ban of VLC mfkl, consulté le avril 22, 2025, https://mfkl.github.io/2024/01/10/unity-double-oss-standards.html
- 26. Unity's Open-Source Double Standard: the ban of VLC DEV Community, consulté le avril 22, 2025,
 - https://dev.to/mfkl/unitys-open-source-double-standard-the-ban-of-vlc-25d5
- 27. Files · kyber · Romain Vimont / FFmpeg GitLab, consulté le avril 22, 2025, https://code.videolan.org/rom1v/ffmpeg/-/tree/kyber
- 28. Kyber: r/cloudygamer Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/cloudygamer/comments/1jr8tzg/kyber/
- 29. Kyber : r/MoonlightStreaming Reddit, consulté le avril 22, 2025, https://www.reddit.com/r/MoonlightStreaming/comments/1jr8w54/kyber/
- 30. Jean-Baptiste Kempf Kyber: a new approach for real-time video and controls streaming based on Quic YouTube, consulté le avril 22, 2025, https://www.youtube.com/watch?v=0RvosCplkCc
- 31. www.pubnub.com, consulté le avril 22, 2025, https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%3A%20One%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%3A%20One%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%3A%20One%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%3A%20One%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%3A%20One%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/learn/glossary/quic-protocol/#:~:text=Reduced%20Latency%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/glossary/quic-protocol/#:~:text=Reduced%20Latency%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/glossary/quic-protocol/#:~:text=Reduced%20Latency%20of%20QUIC's,speeding%20up%20connection%20setup%2">https://www.pubnub.com/glossary/quic-protocol/#:~:text=Reduced%20Latency%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20of%20QUIC's,speeding%20up%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20setup%20connection%20c
- 32. QUIC: The Secure Communication Protocol Shaping the Internet's Future Zscaler, consulté le avril 22, 2025, https://www.zscaler.com/blogs/product-insights/quic-secure-communication-protocol-shaping-future-of-internet
- 33. What is QUIC Protocol? PubNub, consulté le avril 22, 2025, https://www.pubnub.com/learn/glossary/quic-protocol/
- 34. QUIC Wikipedia, consulté le avril 22, 2025, https://en.wikipedia.org/wiki/QUIC
- 35. What Is the QUIC Protocol? | EMQ EMQX, consulté le avril 22, 2025, https://www.emqx.com/en/blog/quic-protocol-the-features-use-cases-and-impact-for-iot-iov
- 36. QUIC Faster Content Delivery on Layer 4 KeyCDN, consulté le avril 22, 2025, https://www.keycdn.com/blog/quic

- 37. Enhanced Flow Control for Low Latency in QUIC MDPI, consulté le avril 22, 2025, https://www.mdpi.com/1996-1073/15/12/4241
- 38. KY FPV Apps on Google Play, consulté le avril 22, 2025, https://play.google.com/store/apps/details?id=com.cooingdv.kyfpv
- 39. The Ultimate Guide to Drone Control Apps Smart Flying at Your Fingertips, consulté le avril 22, 2025, https://blog.dronedesk.io/drone-control-app/
- 40. KY UFO Apps on Google Play, consulté le avril 22, 2025, https://play.google.com/store/apps/details?id=com.cooingdv.kyufo
- 41. Applications | Drone Wolf Playbook, consulté le avril 22, 2025, https://dronewolf.darkwolf.io/How%20They%20Work/Software/apps
- 42. Industry Insights: Tackling Automation's Biggest Challenges: Dexterous Manipulation, consulté le avril 22, 2025, https://www.automate.org/robotics/industry-insights/biggest-automation-challenges-dexterous-manipulation
- 43. FRnOG 39 Jean-Baptiste Kempf : Le projet Kyber Vidéo Dailymotion, consulté le avril 22, 2025, https://www.dailymotion.com/video/x8xm8w4
- 44. FAQ Kyber Labs, consulté le avril 22, 2025, https://kyberlabs.ai/faq
- 45. Kyber Labs, consulté le avril 22, 2025, https://kyberlabs.ai/
- 46. Kyber Labs Products, Competitors, Financials, Employees, Headquarters Locations, consulté le avril 22, 2025, https://www.cbinsights.com/company/kyber-labs
- 47. Kyber Labs 2025 Company Profile: Valuation, Funding & Investors | PitchBook, consulté le avril 22, 2025, https://pitchbook.com/profiles/company/534548-80
- 48. Advancing Telehealth and Telemedicine Technologies in Eastern Kentucky EKU Online, consulté le avril 22, 2025, https://ekuonline.eku.edu/blog/health-services-administration/advancing-telehealth-and-telemedicine-technologies-in-eastern-kentucky/
- 49. Narrative review of telemedicine applications in decentralized research PubMed Central, consulté le avril 22, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10880018/
- 50. Happenings | KPITB | Khyber Pakhtunkhwa Information Technology Board, consulté le avril 22, 2025, https://www.kpitb.gov.pk/index.php/happenings?page=7
- 51. The Equal Distribution of Access to Health Services Through Telemedicine: Applications and Challenges, consulté le avril 22, 2025, https://ejournalisse.com/index.php/isse/article/view/46
- 52. A model for assessment of telemedicine applications: mast PubMed, consulté le avril 22, 2025, https://pubmed.ncbi.nlm.nih.gov/22617736/
- 53. Happenings | KPITB | Khyber Pakhtunkhwa Information Technology Board, consulté le avril 22, 2025, https://kpitb.gov.pk/happenings?page=7
- 54. Post-Quantum Cryptography and Encryption Standards, consulté le avril 22, 2025, https://journals.indexcopernicus.com/publication/4388018
- 55. Ciphertext Overhead (y-axis) vs. public-key size (x-axis) | Download, consulté le avril 22, 2025, https://www.researchgate.net/figure/Ciphertext-Overhead-y-axis-vs-public-key-size-x-axis fig8 386143294

- 56. "Ever heard of VideoLAN..?" The story of VLC by Jean-Baptiste Kempf DevBreak 2021, consulté le avril 22, 2025,
 - https://m.youtube.com/watch?v=loO7xsRFGWU&pp=ygUJI3ZsY3N0b3J5
- 57. Jean-Baptiste Kempf's revolutionary new project YouTube, consulté le avril 22, 2025, https://m.youtube.com/watch?v=0Vtg245ZDbU
- 58. QUIC is not Quick Enough over Fast Internet : r/programming Reddit, consulté le avril 22, 2025,
 - https://www.reddit.com/r/programming/comments/1g7vv66/quic_is_not_quick_enough_over_fast_internet/
- 59. Why is there a general hostility to QUIC by network engineers? Reddit, consulté le avril 22, 2025,
 - https://www.reddit.com/r/networking/comments/148qz1f/why_is_there_a_general_hostility_to_quic_by/
- 60. I'm not an expert but QUIC doesn't seem like enough of an improvement over TCP t... | Hacker News, consulté le avril 22, 2025, https://news.ycombinator.com/item?id=24710737
- 61. Jean-Baptiste Kempf's interview on open source at @VivaTechnology YouTube, consulté le avril 22, 2025, https://www.youtube.com/watch?v=oZzyB6iqdkE